首页 | 本学科首页   官方微博 | 高级检索  
     


Defluoridation of Water by Graphene Oxide Supported Needle-Like Complex Adsorbents
Authors:Subbaiah Muthu Prabhu  S SD Elanchezhiyan  Giehyeon Lee  Sankaran Meenakshi
Affiliation:1.Department of Chemistry,The Gandhigram Rural Institute – Deemed University,Dindigul,India;2.Department of Earth System Sciences,Yonsei University,Seoul,Republic of Korea
Abstract:The dicarboxylic acids like oxalic acid, malonic acid and succinic acid mediated graphene oxide–zirconium needle like complexes were synthesized and used to remove fluoride from simulated fluoride contaminated water. The adsorption of fluoride by dicarboxylic acids mediated graphene oxide–zirconium complexes were by both electrostatic interaction at acidic pH and ion-exchange mechanism at neutral pH. The maximum defluoridation capacity observed was 9.70 mg/g at the minimum contact time of 18 min at room temperature. Various batch equilibrium parameters like pH studies, contact time, common ion interference and temperature studies were optimized. The synthesized graphene oxide and graphene oxide supported complexes were characterized using UV–vis, FTIR, XRD and SEM with EDAX analysis to establish the mechanism of fluoride adsorption. The removal of fluoride was described by the pseudo-second-order reaction kinetics, Freundlich isotherm model and thermodynamic studies which indicates the nature of adsorption was endothermic and spontaneous. Regeneration studies depict that the dicarboxylic acid mediated graphene oxide–zirconium complex can be used as an effective adsorbent for the removal of fluoride ions from wastewater. Also, the field applicability of the material has been verified with field samples collected from nearby fluoride endemic villages.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号