Statistical characterization of the sea ice extent during different winter scenarios in the Gulf of Riga (Baltic Sea) using optical remote-sensing imagery |
| |
Authors: | Laura Siitam Liis Sipelgas Ove Pärn |
| |
Affiliation: | Marine Systems Institute, Tallinn University of Technology, Tallinn, Estonia |
| |
Abstract: | This study focuses on the statistical characterization of ice conditions (extent, sea ice occurrence probability (SIOP), and length of ice season) in the Gulf of Riga, Baltic Sea, using remote-sensing data. The optical remote-sensing data with 250 m resolution acquired by a Moderate Resolution Imaging Spectroradiometer (MODIS) during 2002–2011 were used for statistical characterization of sea ice. A method based on bimodal histogram analysis of remote-sensing reflectance data was developed to discriminate ice from water. In general, ice extent information obtained from MODIS data agrees with the official ice chart data (synthetic aperture radar (SAR) and in situ measurements) and multi-sensor product containing data from microwave and infrared instruments (R2 >0.83). However, in case of severe winters and extremely mild winters there are differences in the dates when maximum ice extent is registered. MODIS data can be used for detailed analysis of ice extent in specific basins of Baltic Sea. Depending on the year, the ice season length in the Gulf of Riga ranged from 68 to 146 days, and the maximum ice extent varied greatly from 329 to 15,350 km2. SIOP and number of ice days increased significantly in areas where the depth is less than 15 m. Based on negative-degree days and ice cover characteristics (SIOP and ice season length), three winter scenarios were defined: severe (2003, 2006, 2010, and 2011), medium (2004 and 2005), and mild (2007, 2008, and 2009). |
| |
Keywords: | |
|
|