首页 | 本学科首页   官方微博 | 高级检索  
     

云环境下实现容器部署的加速粒子群优化算法
引用本文:陆海锋,赵嘉凌,欧阳学名,周娜琴,左利云. 云环境下实现容器部署的加速粒子群优化算法[J]. 计算机应用研究, 2024, 41(3): 756-763
作者姓名:陆海锋  赵嘉凌  欧阳学名  周娜琴  左利云
作者单位:1. 肇庆学院信息中心;2. 华南理工大学软件学院;3. 广州大学网络空间安全学院;4. 广东石油化工学院计算机学院
基金项目:国家自然科学基金资助项目(62002078);;广东省自然科学基金资助项目(2023A1515012874);
摘    要:基于容器的微服务部署是一个具有挑战性的问题,为获得更好的用户体验并给云供应商带来更多的利润,需要在降低微服务的故障率和减少响应时间的同时提高资源利用率。提出了一种改进的加速粒子群优化算法,用于解决集群中微服务容器部署的多目标优化问题。该算法通过考虑微服务之间的调用关系,使得容器聚集在一起,从而降低服务的数据传输成本、减少故障率,并提高集群资源利用率。与现有部署算法相比,实验结果表明,所提出的优化算法在服务间的数据传输开销、故障率和资源利用率等性能指标上有明显改善。具体表现在:容器聚集度的提升达到40%以上,数据传输消耗平均有提升4%以上,故障率减少10%~20%,利用率提升3%左右。

关 键 词:云计算  微服务  容器  加速粒子群算法  多目标优化
收稿时间:2023-07-10
修稿时间:2023-08-30

Accelerated particle swarm optimization algorithm for container deployment in cloud environments
Lu Haifeng,Zhao Jialing,Ouyang Xueming,Zhou Naqin and Zuo Liyun. Accelerated particle swarm optimization algorithm for container deployment in cloud environments[J]. Application Research of Computers, 2024, 41(3): 756-763
Authors:Lu Haifeng  Zhao Jialing  Ouyang Xueming  Zhou Naqin  Zuo Liyun
Affiliation:Information Center Department,ZhaoQing University,Zhaoqing Guangdong,,,,
Abstract:Container-based microservice deployment is a challenging problem that aims to improve user experience and increase cloud providers'' profitability by reducing microservice failure rates and response times while maximizing resource utilization. This paper presented an enhanced accelerated particle swarm optimization algorithm to tackle the multi-objective optimization problem of microservice container deployment in a cluster. By considering the invocation relationships between microservices, the algorithm facilitated the aggregation of containers, thereby reducing data transmission costs, lowering failure rates, and enhancing cluster resource utilization. Experimental results demonstrate that the proposed optimization algorithm yields significant improvements in performance measures including data transmission overhead, failure rate, and resource utilization when compared to existing deployment algorithms. Specifically, the algorithm achieves a container aggregation improvement exceeding 40%, an average increase in data transmission consumption of over 4%, a decrease in failure rate by 10% to 20%, and an increase in utilization rate by roughly 3%. The aforementioned findings attest to the efficacy of the proposed algorithm.
Keywords:cloud computing   microservices   container   accelerated particle swarm optimization   multi-objective optimization
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号