首页 | 本学科首页   官方微博 | 高级检索  
     

基于多传感信息融合的语义词袋SLAM优化算法
引用本文:袁鹏,谷志茹,刘中伟,焦龙飞,毛麒云. 基于多传感信息融合的语义词袋SLAM优化算法[J]. 计算机应用研究, 2024, 41(4): 1247-1251
作者姓名:袁鹏  谷志茹  刘中伟  焦龙飞  毛麒云
作者单位:湖南工业大学轨道交通学院
基金项目:湖南省自然科学基金资助项目(2022JJ50005);;湖南省研究生科研创新项目(QL20230216);;国家自然科学基金区域联合基金重点项目(U23A20385);
摘    要:针对室外大范围场景移动机器人建图中,激光雷达里程计位姿计算不准确导致SLAM (simultaneous localization and mapping)算法精度下降的问题,提出一种基于多传感信息融合的SLAM语义词袋优化算法MSW-SLAM(multi-sensor information fusion SLAM based on semantic word bags)。采用视觉惯性系统引入激光雷达原始观测数据,并通过滑动窗口实现了IMU (inertia measurement unit)量测、视觉特征和激光点云特征的多源数据联合非线性优化;最后算法利用视觉与激光雷达的语义词袋互补特性进行闭环优化,进一步提升了多传感器融合SLAM系统的全局定位和建图精度。实验结果显示,相比于传统的紧耦合双目视觉惯性里程计和激光雷达里程计定位,MSW-SLAM算法能够有效探测轨迹中的闭环信息,并实现高精度的全局位姿图优化,闭环检测后的点云地图具有良好的分辨率和全局一致性。

关 键 词:同时定位与实时建图  语义词袋  位姿估计
收稿时间:2023-08-01
修稿时间:2024-03-12

Multi-sensor information fusion SLAM based on semantic word bags
YUAN Peng,GU Zhi-ru,LIU Zhongwei,JIAO Longfei and MAO Qiyun. Multi-sensor information fusion SLAM based on semantic word bags[J]. Application Research of Computers, 2024, 41(4): 1247-1251
Authors:YUAN Peng  GU Zhi-ru  LIU Zhongwei  JIAO Longfei  MAO Qiyun
Affiliation:Rail Transit College of Hunan University of Technology,,,,
Abstract:This paper proposed an algorithm known as MSW-SLAM(multi-sensor information fusion SLAM based on semantic word bags) to address the issue of inaccurate LiDAR odometry position and pose calculations in the mapping of outdoor large-scale environments by mobile robots, resulting in a decrease in the accuracy of the simultaneous localization and mapping(SLAM) algorithm. This algorithm incorporated raw observation data from LiDAR using a visual inertial system and conducts joint nonlinear optimization of measurements from the inertial measurement unit(IMU), visual features, and laser point cloud features using sliding windows, the algorithm leveraged the complementary semantic word bag characteristics of vision and LiDAR for closed-loop optimization, further enhancing the global positioning and mapping accuracy of the multi-sensor fusion SLAM system. Experimental results demonstrate that, compared to traditional tightly coupled binocular vision-inertial odometry and LiDAR odometry positioning, the MSW-SLAM algorithm can effectively detect closed-loop information in trajectories and achieve high-precision global pose optimization. The point cloud map after closed-loop detection exhibits excellent resolution and global consistency.
Keywords:simultaneous positioning and real-time mapping   semantic word bag   pose estimation
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号