Center for Composite Materials, Harbin Institute of Technology, Harbin, China.Corresponding author. E-mail: sunyg@hit.edu.cnChongqing Key Laboratory of Heterogeneous Material Mechanics, Chongqing University, Chongqing China. wxz@cqu.edu.cn
Abstract:
In order to solve bending behavior difference of corrugated structure in L andWorientation, bending response for composite sandwich beams with foldcores of three different wall thicknesses were experimentally and numerically investigated. Effect of the cell walls thickness on the strength and failure behavior of the composite sandwich beams with L and W orientations was also examined. The deformation mode was obtained by the numerical method; a constitutive law of laminated material has been incorporated into a finite element (FE) analysis program. Numerical calculations give accurate prediction to the bending response of foldcore composite sandwich beams comparing with experiments. Structural flexural stiffness, strength and failure mechanism at a given topological geometry depended on the nature of core itself: the bending stiffness and strength of the sandwich beam increased with the core wall thickness (relative density). Also, bending isotropy was shown in this study for foldcore composite sandwich beams with selected core geometry.