首页 | 本学科首页   官方微博 | 高级检索  
     


Time-Reversal Based Secure Transmission Scheme for 5G Networks over Correlated Wireless Multi-Path Channels
Authors:" target="_blank">Jiang Zhu  Yan Wang  Tian Yang  Fangwei Li
Affiliation:1.School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing,China
Abstract:Broadband wireless communication users for 5G networks are primarily implemented in a complicated environment; the complex environment of time-varying multi-path propagation characteristics will seriously affect the performance of communication. One of the core technologies to overcome this problem is to introduce the environment adaptive technique—time reversal in the wireless link. Further, the problem of a Wiretap Channel in physical layer security research has become a popular research topic in recent years. To resolve the physical layer wiretap channel and multi-path fading problems in wireless channels, a novel concept of combining time reversal technology with physical layer security technology is proposed. In this paper, a physical layer secure transmission scheme based on the joint time reversal technique and artificial noise at the sending end is proposed for the wireless multi-path channel. First, in a typical wiretap channel model, the time reversal technique is used to improve the security of the information transmission process by using the properties of spatial and temporal focusing. Second, as the information is easily eavesdropped near the focus point, artificial noise is added to the sending end to disrupt the eavesdropping capability of the eavesdropper. Finally, due to the complexity of the multi-path channels, the influence of the antenna correlation on the system security performance is considered. Compared with the existing physical layer security schemes, theoretical analysis and simulation results show that the proposed scheme has a higher secrecy signal-to-noise ratio, a higher rate of secrecy, and a lower bit error rate of legitimate user.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号