首页 | 本学科首页   官方微博 | 高级检索  
     


Customizable elliptic curve cryptosystems
Authors:Cheung  RCC Telle  NJ Luk  W Cheung  PYK
Affiliation:Dept. of Comput., Imperial Coll. London, UK;
Abstract:This paper presents a method for producing hardware designs for elliptic curve cryptography (ECC) systems over the finite field GF(2/sup m/), using the optimal normal basis for the representation of numbers. Our field multiplier design is based on a parallel architecture containing multiple m-bit serial multipliers; by changing the number of such serial multipliers, designers can obtain implementations with different tradeoffs in speed, size and level of security. A design generator has been developed which can automatically produce a customised ECC hardware design that meets user-defined requirements. To facilitate performance characterization, we have developed a parametric model for estimating the number of cycles for our generic ECC architecture. The resulting hardware implementations are among the fastest reported: for a key size of 270 bits, a point multiplication in a Xilinx XC2V6000 FPGA at 35 MHz can run over 1000 times faster than a software implementation on a Xeon computer at 2.6 GHz.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号