首页 | 本学科首页   官方微博 | 高级检索  
     


Thermal and Doping Effect on Sn/(n)ZnO Schottky Junction and Its Performance as a <Emphasis Type="Italic">PV</Emphasis> Effect
Authors:G Wary  A Rahman
Affiliation:(1) Department of Microelectronics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, Bratislava, 812 19, Slovak Republic
Abstract:Thin film Sn/(n)ZnO Schottky junctions with different doping concentrations were prepared by vacuum evaporation. Different junction parameters such as ideality factor, barrier height, Richardson’s constant, short-circuit current, etc. were determined from I–V characteristics. These parameters were found to change significantly with variations of doping concentration and temperature. The structures showed the change of the PV effect, giving a fill factor of 0.42 (efficiency of 0.39 %) with an open-circuit voltage of 124mV and a short-circuit current density of 113 × 10−5 A ·cm−2 for a doping concentration, N d = 3.88 × 1015 cm −3(2.74 % Al-doped ZnO). However, by increasing the doping concentration, the efficiency was found to increase by up to 4.54 % for doping concentration, N d = 2.28 × 1017 cm −3. The conversion efficiencies varied with temperature and were observed to have an overall improvement up to 343 K. Proper doping, annealing, and hydrogenation are necessary to reduce the series resistance so as to achieve an ideal and high efficiency PVconverter.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号