A decision support system for water quality issues in the Manzanares River (Madrid, Spain) |
| |
Authors: | Javier Paredes,Joaquí n Andreu,Abel Solera |
| |
Affiliation: | Instituto de Ingeniería del Agua y Medio Ambiente (Water and Environmental Engineering Institute), Universidad Politécnica de Valencia, Spain |
| |
Abstract: | The Manzanares River, located in Madrid (Spain), is the main water supplier of a highly populated region, and it also receives wastewater from the same area. The effluents of eight Waste Water Treatment Plants (WWTPs) downstream of the river, which represent 90% of the flow in the middle and lower parts of the river, are the primary sources of water pollution. Although the situation has improved slightly in the last two years, the water in the river is highly polluted, making it uninhabitable for aquatic life. Water quality modelling is typically used to assess the effect of treatment improvements in water bodies. In this work, the GESCAL module of the Aquatool Decision Support System Shell was used to simulate water quality in the Manzanares River. GESCAL is appropriate for modelling in an integrated way water quality for whole water resources systems, including reservoirs and rivers. A model was built that simulates conductivity, phosphorous, carbonaceous organic matter, dissolved oxygen, organic nitrogen, ammonia, and nitrates. The period from October 2006 to September 2008 was selected for calibration due to the many treatment modifications that occurred during this time. An earlier and longer period, from October 2000 to September 2006, was used for validation. In addition, a daily model was used to analyse the robustness of the GESCAL model. Once the GESCAL model was validated, different scenarios were considered and simulated. First, different combinations of nutrient elimination among the different WWTPs were simulated, leading to the conclusion that investments have to focus on three of the proposed WWTPs. Moreover, these treatments will not be sufficient to maintain fish habitat conditions at all times. Additional measures, such as the increment of the flow in the river or oxygen injection, were simulated. Incrementing the flow of the Manzanares River has been shown to be an efficient means of increasing water quality, but this implies an increment in the risk of water scarcity situations in the Madrid water supply system. |
| |
Keywords: | Water quality Water quality modelling Manzanares River Spain Dissolved oxygen Nutrients Decision support system |
本文献已被 ScienceDirect 等数据库收录! |
|