首页 | 本学科首页   官方微博 | 高级检索  
     

CCGA焊点热循环加载条件下应力应变有限元分析
引用本文:黄春跃,周德俭,李春泉. CCGA焊点热循环加载条件下应力应变有限元分析[J]. 桂林电子科技大学学报, 2001, 21(3): 22-28
作者姓名:黄春跃  周德俭  李春泉
作者单位:桂林电子工业学院机电与交通工程系,
摘    要:SMT焊点在热循环加载条件下的应力应变过程分析是 SMT焊点可靠性研究的重要内容。SMT焊点的可靠性问题主要是焊点在热循环过程中 ,由于陶瓷芯片载体与基板材料之间的热膨胀失配而导致焊点的蠕变疲劳失效。以 CCGA焊点为例 ,利用 CCGA三维焊点形态预测表面节点输出结果 ,将焊点形态分析三维表面模型转换为焊点应力应变有限元分析三维实体模型 ,从而建立了 CCGA焊点可靠性分析模型 ,采用三维有限元方法分析了 CCGA焊点在热循环条件下的应力应变过程。在此基础上 ,对 CCGA焊点疲劳寿命进行了计算

关 键 词:SMT  CCGA  热循环  有限元分析  热疲劳寿命
文章编号:1001-7437(2001)03-22-07
修稿时间:2001-06-14

The FEM Analysis of Stress and Strain in CCGA Solder Joint Under the Thermal Cycle
HUANG Chun yue,ZHOU De jian,LI Chun quan. The FEM Analysis of Stress and Strain in CCGA Solder Joint Under the Thermal Cycle[J]. Journal of Guilin University of Electronic Technology, 2001, 21(3): 22-28
Authors:HUANG Chun yue  ZHOU De jian  LI Chun quan
Abstract:The FEM analysis of stress and strain in solder joint process under the thermal cycle is one of the important aspects in the research field of solder joints reliability. The primary issue of SMT solder joint reliability is the creep fatigue failure due to the coefficient of thermal expansion (CTE) mismatch between the ceramic chip carrier and the substrate material under the thermal cycle. In this dissertation, an elasto plasto creep material model and its mechanical constitutive equation were described for SnPb solder alloy. By taking the CCGA solder joint as an example, and by taking an advantage of the modal output result of shape surface of CCGA 3 D solder joint, finally by converting the 3 D surface model of solder joint shape analysis to 3 D solid model of finite element analysis for stress and strain of solder joint, the CCGA solder joint reliability analysis model was established.Meanwhile the stress strain response of the CCGA solder joint under the thermal cycle was analyzed by using 3 D FEM. On the basis of this model, the thermal fatigue life of CCGA was calculated.
Keywords:SMT  CCGA   FEM analysis  thermal fatigue life
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号