首页 | 本学科首页   官方微博 | 高级检索  
     


Plant-derived polyphenols attenuate lipopolysaccharide-induced nitric oxide and tumour necrosis factor production in murine microglia and macrophages
Authors:Shanmugam Kirubakaran  Holmquist Lina  Steele Megan  Stuchbury Grant  Berbaum Katrin  Schulz Oliver  Benavente García Obdulio  Castillo Julián  Burnell Jim  Garcia Rivas Vernon  Dobson Geoff  Münch Gerald
Affiliation:Biochemistry and Molecular Biology, James Cook University, Townsville, Australia. Fax: + 61-7-4781-6078.
Abstract:Lipopolysaccharides released during bacterial infections induce the expression of pro-inflammatory cytokines and lead to complications such as neuronal damage in the CNS and septic shock in the periphery. While the initial infection is treated by antibiotics, anti-inflammatory agents would be advantageous add-on medications. In order to identify such compounds, we have compared 29 commercially available polyphenol-containing plant extracts and pure compounds for their ability to prevent LPS-induced up-regulation of NO production. Among the botanical extracts, bearberry and grape seed were the most active preparations, exhibiting IC(50) values of around 20 mug/mL. Among the pure compounds, IC(50) values for apigenin, diosmetin and silybin were 15, 19 and 12 muM, in N-11 murine microglia, and 7, 16 and 25 muM, in RAW 264.7 murine macrophages, respectively. In addition, these flavonoids were also able to down-regulate LPS-induced tumour necrosis factor production. Structure-activity relationships of the flavonoids demonstrated three distinct principles: (i) flavonoid-aglycons are more potent than the corresponding glycosides, (ii) flavonoids with a 4'-OH substitution in the B-ring are more potent than those with a 3'-OH-4'-methoxy substitution, (iii) flavonoids of the flavone type (with a C2=C3 double bond) are more potent than those of the flavanone type (with a at C2-C3 single bond).
Keywords:Bacterial meningitis  Flavonoids  Inflammation  Lipopolysaccharide  Septic shock
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号