首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling the size-dependent elastic properties of polymeric nanofibers
Authors:Sun Liang  Han Ray P S  Wang Jun  Lim C T
Affiliation:Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433, People's Republic of China.
Abstract:We present a strain gradient (SG) theory to explain the strongly inverse size dependence between the elastic modulus and fiber diameter in polymeric nanofibers. For centrosymmetric and isotropic materials we showed that the three length-scale parameters can be combined into a single parameter that can be used to predict the onset of the size-dependent trend when the fiber diameter is reduced past its critical size. To address the issue of whether the SG offers a plausible explanation of the size-dependent behavior we conducted a series of uniaxial tensile and static bending tests involving polycaprolactone nanofibers. Since the elastic modulus is highly sensitive to the fiber diameter, it is necessary to correct the experimental data to account for the lack of circularity in the cross-section of the real fiber. Additionally, we applied the SG model to study the size-dependent elastic properties of polypyrrole nanotubes. By approaching the SG theory from a dynamics point of view, our model is able to capture size-dependent effects in the mechanics of fine-scale materials for both static and dynamic responses.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号