首页 | 本学科首页   官方微博 | 高级检索  
     


Vapor pressure assisted crack growth at interfaces under mixed mode loading
Authors:C. W. Chong   T. F. Guo  L. Cheng  
Affiliation:

Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore

Abstract:Moisture diffuses into the numerous pores and cavities formed in polymeric molding compounds, at the filler particle–polymer matrix interfaces and at polymer–silicon interfaces of IC packages. During reflow soldering, the rapidly expanding moisture generates high internal pressures within the voids which are comparable to yield strengths of the molding compounds at glass transition temperatures. The combined action of thermal stresses and high vapor pressure accelerates void growth, and ultimately leads to interface delamination and package cracking. In this study, the molding compound is taken to be an elastic–plastic material while the silicon substrate is treated as an elastic material. The extended Gurson model which incorporates vapor pressure as an internal variable is used to characterize the void growth and coalescence process at the interface. When the mode II loading is dominant, high vapor pressure can cause several-fold reduction in the interface fracture toughness.
Keywords:Interface toughness   Void growth   Cell model   Popcorn failure   Finite element analysis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号