首页 | 本学科首页   官方微博 | 高级检索  
     


Kinetics and mechanism of iodide-film growth on lead-effect of short-circuiting and higher-valent dopant
Authors:S C Kuiry  S K Roy  S K Bose
Affiliation:(1) Metallurgical and Materials Engineering Department, Indian Institute of Technology, 721302 Kharagpur, India
Abstract:The effect of a higher-valent dopant like Sb on the iodination rate of lead under normal and short-circuit conditions in iodine pressure of 0.615–6.578 kPa and in the temperature range of 423–523 K has been investigated. Like pure Pb, Sb-doped Pb also follows the parabolic law of film growth. The isothermal parabolic rate constants are found to be enhanced due to the presence of Sb. The iodine-vapor-pressure dependence of the isothermal parabolic rate constant has been observed to be kpproppI 2 1/2 . This has been explained on the consideration of electron-hole migration across the film as the rate-limiting step. The activation energy for iodination of Sb-doped Pb under normal condition is estimated to be 64 kJ · mol–1 in an iodine pressure of 0.615 kPa. The rate of iodide-film growth has been found to increase considerably under a short-circuit mode of experiments. Such observations have been explained with the concept of ion migration as the rate-limiting step for the film-growth process. The iodine pressure dependence of rate constants under short-circuit conditions is observed to be kppropI 2 1/3 , associated with an activation energy value of 51 kJ mol–1. The effect of putting additional resistances in series to the short-circuit Pt path during iodination of Sb-doped Pb is found to be similar to that observed for pure Pb. Results of the present study have been explained considering the prevalence of Schottky-Wagner type of point defects in the lead-iodide film. Wagner's electrochemical potential gradient has been confirmed to be the main driving force for the film-growth process. Iodide films have been characterized by SEM, EDS, EPMA, XRD, and AES analyses to substantiate the kinetics results.
Keywords:lead-iodide film  Wagner's parabolic law  doping effect  hole migration  shortcircuit effect  ion transport  Schottky-Wagner defects
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号