Permalloy loaded transmission lines for high-speed interconnect applications |
| |
Authors: | Pingshan Wang Tien N.C. Kan E.C.-C. |
| |
Affiliation: | Sch. of Electr. & Comput. Eng., Cornell Univ., Ithaca, NY, USA; |
| |
Abstract: | The mutual inductance and self-inductance of global interconnects are important but difficult to extract and model in deep submicrometer very large scale integration (VLSI) designs. The absence of effective mutual magnetic field shielding limits the maximum unbuffered interconnect line length. In this paper, we propose and demonstrate that permalloy-loaded transmission lines can be used for high-speed interconnect applications to overcome these limitations. Permalloy films were incorporated into planar transmission lines using a CMOS-compatible process. The line characteristics show that eddy-current effects are the limiting factors for the high-frequency permalloy applications when ferromagnetic resonance are restrained through geometry design. Patterning permalloy films effectively extends their application to above 20 GHz. The line characteristic impedances are about /spl sim/90 /spl Omega/. Under 50 mA dc current biases, the line parameters did not change much. Moreover, the patterned permalloy reduces the magnetic field coupling between two adjacent transmission lines by about 10 dB in our design. The demonstrated operation frequency range, current carrying capability and magnetic field shielding properties indicate that the permalloy loaded lines are suitable for high-speed interconnect applications in CMOS technologies. |
| |
Keywords: | |
|
|