Simulating the human body's microclimate using automatic coupling of CFD and an advanced thermoregulation model |
| |
Authors: | C. Voelker H. Alsaad |
| |
Affiliation: | Department of Building Physics, Bauhaus‐University Weimar, Weimar, Germany |
| |
Abstract: | This study aims to develop an approach to couple a computational fluid dynamics (CFD) solver to the University of California, Berkeley (UCB) thermal comfort model to accurately evaluate thermal comfort. The coupling was made using an iterative JavaScript to automatically transfer data for each individual segment of the human body back and forth between the CFD solver and the UCB model until reaching convergence defined by a stopping criterion. The location from which data are transferred to the UCB model was determined using a new approach based on the temperature difference between subsequent points on the temperature profile curve in the vicinity of the body surface. This approach was used because the microclimate surrounding the human body differs in thickness depending on the body segment and the surrounding environment. To accurately simulate the thermal environment, the numerical model was validated beforehand using experimental data collected in a climate chamber equipped with a thermal manikin. Furthermore, an example of the practical implementations of this coupling is reported in this paper through radiant floor cooling simulation cases, in which overall and local thermal sensation and comfort were investigated using the coupled UCB model. |
| |
Keywords: | computational fluid dynamics heat transfer coefficient microclimate thermal comfort thermal sensation UCB model |
|
|