首页 | 本学科首页   官方微博 | 高级检索  
     

基于连续-离散介质耦合的水合物储层出砂数值模拟
引用本文:窦晓峰,宁伏龙,李彦龙,刘昌岭,孙嘉鑫,李杨,李晓东,赵颖杰,张凌,刘乐乐.基于连续-离散介质耦合的水合物储层出砂数值模拟[J].石油学报,2020,41(5):629-642.
作者姓名:窦晓峰  宁伏龙  李彦龙  刘昌岭  孙嘉鑫  李杨  李晓东  赵颖杰  张凌  刘乐乐
作者单位:1. 中国地质大学(武汉)工程学院 湖北武汉 430074; 2. 科技部地球深部钻探与深地资源开发国际联合研究中心 湖北武汉 430074; 3. 青岛海洋国家实验室海洋矿产资源评价与探测技术功能实验室 山东青岛 266071; 4. 青岛海洋地质研究所自然资源部天然气水合物重点实验室 山东青岛 266071; 5. 武汉 大学水资源与水电工程科学国家重点实验室 湖北武汉 430072
基金项目:中国地质调查局海洋地质调查专项(DD20189330,DD20190306)、国家重点研发计划项目(2017YFC0307604,2018YFE0126400)、国家自然科学基金项目(No.41606078)和青岛海洋科学与技术国家实验室开放基金项目(QNLM2016ORP0203)资助。
摘    要:出砂是制约天然气水合物安全高效长期可控开采的瓶颈之一,出砂现象的诱因及其演化规律与水合物储层动态响应行为密切相关。据此,提出了一套研究水合物开采过程中储层动态响应与出砂行为的综合数值模拟方法,并以大尺寸开采出砂防砂模拟反应釜为研究对象,以水合物胶结模式为例,分析了实验尺度下模拟水合物储层在不同开采压差条件下的储层物性、力学响应和流固体(水、气和砂)运移产出规律。结果表明:实验尺度降压开采过程中,体系温度存在快速降温、持续低温和温度回升3个阶段;水合物分解引起的气水产出和井周应力集中是水合物储层出砂的关键控制因素;同一开采压差条件下,提高水流速会导致地层出砂量增加,并且出砂速率的增幅随水流速的增大而增大,而缩小防砂筛孔孔径能够延缓出砂起始时间,并且使得出砂量显著减少。

关 键 词:水合物  开采  储层响应  出砂  实验尺度  数值模拟  
收稿时间:2019-06-19
修稿时间:2020-01-17

Continuum-discrete coupling method for numerical simulation of sand production from hydrate reservoirs: a lab-scale case study
Dou Xiaofeng,Ning Fulong,Li Yanlong,Liu Changling,Sun Jiaxin,Li Yang,Li Xiaodong,Zhao Yingjie,Zhang Ling,Liu Lele.Continuum-discrete coupling method for numerical simulation of sand production from hydrate reservoirs: a lab-scale case study[J].Acta Petrolei Sinica,2020,41(5):629-642.
Authors:Dou Xiaofeng  Ning Fulong  Li Yanlong  Liu Changling  Sun Jiaxin  Li Yang  Li Xiaodong  Zhao Yingjie  Zhang Ling  Liu Lele
Abstract:Sand production is one of the bottlenecks restricting the safe, efficient and long-term controlling gas production from natural gas hydrate-bearing sediments (GHBS). The inducement and evolution law of sand production are closely related to the dynamic response behavior of GHBS. On this basis, this paper proposes a comprehensive numerical simulation method for studying the dynamic response of reservoirs and sand production behavior during gas production from GHBS. Further, taking the large-size sand production and sand control simulation device as the research object, and the cementation mode of hydrate as a case, this paper analyzes the physical property and mechanical responses, migration and production laws of fluids and solids (water, gas, and sand)of the simulated hydrate reservoirs under different production pressure drops at the laboratory scale. The results show that during depressurization development of the laboratory scale, the system temperature has experienced three stages:rapid cooling, sustained low temperature, and temperature rise; gas-water production and stress concentration around the well caused by hydrate decomposition are the key control factors for sand production in hydrate reservoirs; under the same production differential pressure, increasing the water velocity will increase the sand production, and the sand production rate will increase with the increasing of water velocity. The reduction of the sand control sieve aperture can delay the starting time of sand production, and significantly decreases sand production.
Keywords:hydrate  gas production  reservoir response  sand production  laboratory scale  numerical simulation  
本文献已被 CNKI 等数据库收录!
点击此处可从《石油学报》浏览原始摘要信息
点击此处可从《石油学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号