首页 | 本学科首页   官方微博 | 高级检索  
     


Performance of alumina-supported noble metal catalysts for the combustion of trichloroethene at dry and wet conditions
Authors:Beatriz Miranda  Eva Díaz  Salvador Ordez  Aurelio Vega  Fernando V Díez
Affiliation:

Department of Chemical Engineering and Environmental Technology, University of Oviedo, Julián Clavería s/n, 33006 Oviedo, Spain

Abstract:The performance of four different alumina-supported noble metal catalysts (0.5% of Pd, Pt, Rh and Ru, respectively) for the deep oxidation of trichloroethene (1000–2500 ppmV, WHSV = 55 h?1) in air was studied in this work. Experiments were carried out at both dry and wet (20,000 ppm of H2O) conditions. Catalysts were compared in terms of activity, selectivity for the different reaction products (CO2, HCl, Cl2, C2Cl4, CCl4 and CHCl3), and stability at reaction conditions.

As general trend, the activity of the catalysts decreases in the order Ru much greater-than Pd > Rh > Pt. Concerning to the effect of the water addition, no important effect on the catalyst activity was observed, except in the case of Pt, for which an increase of the catalytic activity was observed. Reaction mechanism (and hence product distribution) is very similar for Rh, Pd and Pt, being in these cases C2Cl4 the only organochlorinated by-product detected. In the case of Ru, the reaction mechanism seems to be quite different, CCl4 and CHCl3 being the main organic by-products.

Simple power-law kinetic expressions (first order on trichloroethene concentration for Pd, Rh and Ru, and zeroth order for Pt) provide fairly good fits for catalytic performance of the studied catalysts.

Finally, deactivation studies show that both formation of active metal chlorides (especially in the case of Rh) and fouling (especially for Pd and Pt) are the main deactivation causes.

Keywords:Catalytic oxidation  Trichloroethene  Pd  Ru  Pt  Rh  Adsorption
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号