首页 | 本学科首页   官方微博 | 高级检索  
     

基于集成学习的风云四号遥感图像云相态分类算法
引用本文:高军, 陈建, 田晓宇. 基于集成学习的风云四号遥感图像云相态分类算法[J]. 红外技术, 2020, 42(1): 68-74.
作者姓名:高军  陈建  田晓宇
作者单位:上海海事大学 信息工程学院,上海 201306;西藏自治区经济和信息化厅信息化推进处,拉萨 850033;上海海事大学 信息工程学院,上海 201306
摘    要:云相态分类在气象预报和气候研究中具有重要的地位。我国新一代气象卫星风云四号的成像仪在光谱通道数量和空间分辨率较上一代风云二号有较大提升,这为云相态的研究提供了新的遥感数据。本文首先对风云四号相隔15 min的遥感图像进行分析,然后提出亮温云相态指数,该指数可以进行初步云相态分类,最后在此基础上提出基于集成学习的云相态分类算法。实验结果与风云四号官方云相态分类结果进行比较,水云的一致率达到91.69%,冰云的一致率达到76.10%。

关 键 词:云相态  集成学习  风云四号  遥感图像处理

Ensemble-learning-based Cloud Phase Classification Method for FengYun-4 Remote Sensing Images
GAO Jun, CHEN Jian, TIAN Xiaoyu. Ensemble-learning-based Cloud Phase Classification Method for FengYun-4 Remote Sensing Images[J]. Infrared Technology , 2020, 42(1): 68-74.
Authors:GAO Jun  CHEN Jian  TIAN Xiaoyu
Affiliation:(College of Information Engineering,Shanghai Maritime University,Shanghai 201306,China;Information Promotion Office,Department of Economy and Information Technology of Tibet Autonomous Region,Lasa 850033,China)
Abstract:Cloud phase classification plays an important role in meteorological forecast and climate research.The image of meteorological satellite FengYun-4(FY-4)has more channels and better resolution than FY-2.So it provides new remote sensing data for the study of the cloud phase.This study uses a brightness temperature cloud phase index to obtain cloud phase data.Thereafter,using the cloud phase data and ensemble learning algorithm,we develop a cloud phase classification model.By applying the cloud phase classification model,the predicted classification accuracy of water cloud and ice cloud are 91.69%and 76.10%,respectively.
Keywords:cloud phase  ensemble learning  FY-4  remote image processing
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《红外技术》浏览原始摘要信息
点击此处可从《红外技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号