首页 | 本学科首页   官方微博 | 高级检索  
     


Interfacial phenomena controlling particle morphology of composite latexes
Authors:Yi-Cherng Chen  Victoria Dimonie  Mohamed S El-Aasser
Abstract:A thermodynamic analysis and a mathematical model were derived to describe the free energy changes corresponding to various possible morphologies in composite latex particles. Seeded batch emulsion polymerization was carried out at 70°C using as seed monodisperse polystyrene latex particles having different surface polarity. The surface polarity was estimated by contact angle measurement at the latex “film”/water interface for octane as the probe liquid. Methyl methacrylate and ethyl methacrylate were polymerized in a second stage seeded emulsion polymerization using polystyrene particles as seed in the presence of a nonionic stabilizer, nonyphenol polyethylene oxide (Igepal Co-990). Two types of initiators, potassium persulfate (K2S2O8) and azobisiobutyronitrile (AIBN), were used to change the interfacial tension between the second stage polymer (in monomer) and water interface. The values of the interfacial tension of polymer solutions in the second stage monomer vs. the aqueous phase, measured by drop-weight–volume method under conditions similar to those prevailing during the polymerization, correlated well with the determined particle surface polarity and the observed TEM particle morphology. The results showed that, rather than the polymer bulk hydrophilicity, the surface particle polarity is the controlling parameter in deciding which phase is inside or outside in the composite particle. The variation of the polymer phase interfacial tension with polymer concentration was also estimated. Based on experimentally measured interfacial tensions, composite particle configurations were predicted. The predicted morphologies showed good agreement with the observed particle morphologies of the composite latexes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号