首页 | 本学科首页   官方微博 | 高级检索  
     


Impact Response and Microstructural Evolution of 316L Stainless Steel under Ambient and Elevated Temperature Conditions
Authors:Woei-Shyan Lee  Tao-Hsing Chen  Chi-Feng Lin  Wen-Zhen Luo
Affiliation:1. Department of Mechanical Engineering, National Cheng Kung University, Tainan, 701, Taiwan, R.O.C.
2. Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, 807, Taiwan, R.O.C.
3. National Center for High-Performance Computing, Hsin-Shi Tainan County, 744, Taiwan, R.O.C.
Abstract:The impact response and microstructural evolution of 316L stainless steel are examined at strain rates ranging from 1?×?103 to 5?×?103?s?1 and temperatures between 298?K and 1073?K (25?°C and 800?°C) using a split Hopkinson pressure bar and transmission electron microscopy (TEM). The results show that the flow behavior, mechanical strength, and work-hardening properties of 316L stainless steel are significantly dependent on the strain rate and temperature. The TEM observations reveal that the dislocation density increases with increasing strain rate but decreases with increasing temperature. Moreover, twinning occurs only in the specimens deformed at 298?K (25?°C), which suggests that the threshold stress for twinning is higher than that for slip under impact loading. Finally, it is found that the volume fraction of transformed ???? martensite increases with increasing strain rate or decreasing temperature. Overall, the results suggest that the increased flow stress observed in 316L stainless steel under higher strain rates and lower temperatures is determined by the combined effects of dislocation multiplication, twin nucleation and growth, and martensite transformation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号