首页 | 本学科首页   官方微博 | 高级检索  
     


Alkalinity generation and metals retention in a successive alkalinity producing system
Authors:Robert W Nairn  Matthew N Mercer
Affiliation:(1) School of Civil Engineering and Environmental Science, The University of Oklahoma, 202 West Boyd Street Room 334, 73019 Norman, OK;(2) Oklahoma Conservation Commission, 2800 N. Lincoln Blvd. Suite 160, 73105 Oklahoma City, OK
Abstract:Alkalinity generation and metals retention were evaluated during the initial year of operation of a treatment wetland, consisting of four 185 m2 inseries cells comprised of alternating vertical-flow anaerobic substrate wetlands (VFs) and surface-flow aerobic settling ponds (SFs). The substrate in the VFs consists of spent mushroom substrate (SMS) and limestone gravel, supplemented with hydrated fly ash in a 20∶10∶1 ratio by volume. Approximately 15±4 L/min of acid mine drainage (AMD) from an abandoned underground coal mine in southeastern Oklahoma, USA, was directed to the system in October 1998 (mean influent water quality: 660 mg L−1 net acidity as CaCO3 eq., pH 3.4, 215 mg L−1 total Fe, 36 mg L−1 Al, 14 mg L−1 Mn, and 1000 mg L−1 SO4 −2). Flow through the first VF resulted in substantial increases in alkalinity, decreased metal concentrations and circumneutral pH. 258±84 mg L−1 of alkalinity was produced in the first VF by a combination of processes. Final discharge waters were net alkaline on all sampling dates (mean net alkalinity=136 mg L−1). Total Fe and Al concentrations decreased significantly from 216±45 to 44±28 mg L−1 and 36±6.9 to 1.29±4.4 mg L−1, respectively. Manganese concentrations did not change significantly in the first two cells, but decreased significantly in the second two cells. Mean acidity removal rates in the first VF (51 g m−2 day−1) were similar to those previously reported.
Keywords:Acid mine drainage  Oklahoma  passive treatment  water treatment  wetlands
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号