首页 | 本学科首页   官方微博 | 高级检索  
     


Bayesian recognition of local 3-d shape by approximating image intensity functions with quadric polynomials
Authors:Bolle R M  Cooper D B
Affiliation:Laboratory for Engineering Man/Machine Systems, Division of Engineering, Brown University, Providence, RI 02912.;
Abstract:The recognition in image data of viewed patches of spheres, cylinders, and planes in the 3-D world is discussed as a first step to complex object recognition or complex object location and orientation estimation. Accordingly, an image is partitioned into small square windows, each of which is a view of a piece of a sphere, or of a cylinder, or of a plane. Windows are processed in parallel for recognition of content. New concepts and techniques include approximations of the image within a window by 2-D quadric polynomials where each approximation is constrained by one of the hypotheses that the 3-D surface shape seen is either planar, cylindrical, or spherical; a recognizer based upon these approximations to determine whether the object patch viewed is a piece of a sphere, or a piece of a cylinder, or a piece of a plane; lowpass filtering of the image by the approximation. The shape recognition is computationally simple, and for large windows is approximately Bayesian minimum-probability-of-error recognition. These classifications are useful for many purposes. One such purpose is to enable a following processor to use an appropriate estimator to estimate shape, and orientation and location parameters for the 3-D surface seen within a window.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号