首页 | 本学科首页   官方微博 | 高级检索  
     

基于径向基函数神经网络的自适应滤波器
引用本文:李春宇. 基于径向基函数神经网络的自适应滤波器[J]. 常州工学院学报, 2005, 18(6): 21-24
作者姓名:李春宇
作者单位:淮海工学院电子系,江苏,连云港,222008
摘    要:自适应滤波器在信号检测、信号恢复、数字通信等领域中被广泛应用。传统的自适应滤波器主要在时域中实现。通常采用算法简单、稳健性好的自适应LMS算法。但LMS算法对输入信号的自相关矩阵具有很强的依赖性,因而自适应率不高。本文提出利用RBF神经网络实现的自适应滤波,并将其用于语音除噪和脉象信号的除噪。仿真结果表明该方法具有良好的非线性噪声抑制能力。

关 键 词:自适应滤波  径向基函数神经网络  语音信号  脉象信号
文章编号:1671-0436(2005)06-0021-04
收稿时间:2005-05-24
修稿时间:2005-05-24

Adaptive Filter Based on Radial Basis Function of Neural Network
LI Chun-yu. Adaptive Filter Based on Radial Basis Function of Neural Network[J]. Journal of Changzhou Institute of Technology, 2005, 18(6): 21-24
Authors:LI Chun-yu
Affiliation:Department of Electronic Engineering , Huaihai Institute of Technology, Lianyungang 222008
Abstract:Adaptive filters are commonly used in the field of signal detection,signal restore and digital communication.The classical adaptive filters are principally implemented in the time domain.The classical algorithm of adaptive filter is the least mean square(LMS) algorithm.The LMS algorithm has the characteristic of being simple and stable.Due to the fact that LMS algorithm highly dependents on the autocorrelation matrix,the algorithm has low adaptive ratio.In this paper,we improve the method by using the radial basis neural network to realize the adaptive filter.After using it in the field of removing noise in the voice signal and controlling noise in the pulse signal,we find the method has good performance in controlling nonlinear noise.
Keywords:adaptive filter   radial basis function neural network   voice signal   pulse signal
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号