首页 | 本学科首页   官方微博 | 高级检索  
     


Fe3 O4 /Ag nanocomposite biosynthesised using Spirulina platensis extract and its enhanced anticancer efficiency
Authors:Ali Salehzadeh  Akram Sadat Naeemi  Ladan Khaknezhad  Zeinab Moradi&#x;Shoeili  Seyed Ataollah Sadat Shandiz
Affiliation:1. Department of Biology, Rasht Branch, Islamic Azad University, Rasht Iran ; 2. Department of Biology, Faculty of Science, University of Guilan, Rasht Iran ; 3. Department of Chemistry, Faculty of Sciences, University of Guilan, P.O. Box 41335‐1914, Rasht Iran ; 4. Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran Iran
Abstract:In this work, the authors investigated the apoptotic activities of Fe3 O4 /Ag nanocomposite biosynthesised by Spirulina platensis extract against MCF‐7 (human breast cancer cells). The physico‐chemical properties of prepared Fe3 O4 /Ag nanocomposite were studied by different spectroscopic methods. To evaluate the in vitro cytotoxic effect, MCF‐7 cells were treated with different concentrations of Fe3 O4 /Ag nanocomposite and examined by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl‐tetrazolium bromide (MTT) assay. Moreover, apoptotic effects were also studied by Hoechst 33258 staining, caspase 3 activation assays, and annexin V‐fluorescein isothiocyanate (FITC) and propidium iodide staining. Microscopic observations of Fe3 O4 /Ag nanocomposites indicated approximately spherical shape and small particles in the size range of about 30–50 nm. The MTT assay result revealed that the Fe3 O4 /Ag nanocomposite causes a dose‐dependent cell proliferation reduction in MCF‐7 cells (IC50  = 135 μg/ml). Regarding to the Annexin V/PI staining result, the increase percentage of apoptotic cells (28.09%) was detected as compared to untreated cells. According to the caspase assay, Fe3 O4 /Ag nanocomposite enhances caspase 3 level. Furthermore, in vitro anti‐cancer activity of the nanocomposite was performed by Hoechst 33258 staining method. The proposed data suggest that Fe3 O4 /Ag nanocomposite may be an effective agent for the inhibition of breast cancer cells at in vitro level.Inspec keywords: nanomedicine, nanocomposites, toxicology, cancer, drug delivery systems, nanofabrication, cellular biophysics, nanoparticlesOther keywords: MCF‐7 cells, 5‐diphenyl‐tetrazolium, apoptotic effects, propidium iodide staining, dose‐dependent cell proliferation reduction, apoptotic cells, untreated cells, nanocomposite, Hoechst 33258 staining method, human breast cancer cells, physico‐chemical properties, spectroscopic methods, in vitro cytotoxic effect, in vitro anticancer activity, biosynthesis, caspase 3 activation assays, annexin V‐fluorescein isothiocyanate, FITC, Fe3 O4 ‐Ag
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号