首页 | 本学科首页   官方微博 | 高级检索  
     


Structural and physicochemical properties of Rheum emodi mediated Mg(OH)2 nanoparticles and their antibacterial and cytotoxic potential
Authors:Deepika Sharma  Lalita Ledwani  Naveen Kumar  Naveed Pervaiz  Tarang Mehrotra  Ravinder Kumar
Affiliation:1. Manipal University Jaipur, Rajasthan, 303007 India ; 2. Punjab Engineering College (Deemed to be University), Chandigarh 160012 India ; 3. Department of Zoology, Panjab University, Chandigarh 160014 India ; 4. College of Professional Studies, Northeastern University, Boston Massachusetts, 02115 USA
Abstract:In the present investigation, Rheum emodi roots extract mediated magnesium hydroxide nanoparticles Mg(OH)2 NPs] through the bio‐inspired experimental technique were synthesised. Mg(OH)2 NPs were characterised by using various characterisation techniques such as field emission scanning electron microscopy, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and ultraviolet–visible spectroscopy. The formation of Mg(OH)2 NPs was confirmed by X‐ray diffraction. The structural analysis confirmed the hexagonal crystal symmetry of Mg(OH)2 NPs with space group P‐3m1 and space group no. 164 using the Rietveld refinement technique. TEM micrographs illustrated the nano‐size formation of Mg(OH)2 NPs of spherical shape and size ∼14.86 nm. With the aid of FTIR data, plant metabolites such as anthraquinones have been identified as a stabilising and reducing agent for the synthesis of biogenic Mg(OH)2 NPs. The synthesised Mg(OH)2 NPs showed antimicrobial and cytotoxic potential against Gram‐negative and Gram‐positive bacteria such as Escherichia coli (ATCC 25922) and Staphylococcus aureus (ATCC 25923) and MDA‐MB‐231 human breast cancer cell lines.Inspec keywords: antibacterial activity, microorganisms, visible spectra, cancer, X‐ray diffraction, cellular biophysics, nanomedicine, ultraviolet spectra, nanoparticles, transmission electron microscopy, nanofabrication, field emission scanning electron microscopy, Fourier transform infrared spectra, particle size, magnesium compounds, space groups, toxicologyOther keywords: physicochemical properties, structural properties, Rheum emodi root extract mediated magnesium hydroxide nanoparticles, bio‐inspired experimental technique, field emission scanning electron microscopy, transmission electron microscopy, TEM, Fourier transform infrared spectroscopy, FTIR spectroscopy, ultraviolet‐visible spectroscopy, X‐ray diffraction, hexagonal crystal symmetry, space group P‐3m1, space group no. 164, Rietveld refinement technique, nanosize formation, plant metabolites, spherical shape, antibacterial potential, cytotoxic potential, reducing agent, anthraquinones, stabilising agent, Gram‐positive bacteria, Gram‐negative bacteria, Escherichia coli, Staphylococcus aureus, MDA‐MB‐231 human breast cancer cell lines, Mg(OH)2
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号