Synergistic evaluation of AgO2 nanoparticles with ceftriaxone against CTXM and blaSHV genes positive ESBL producing clinical strains of Uro‐pathogenic E. coli
|
| |
Authors: | Shamaila Sajjad Bushra Uzair Anum Shaukat Madiha Jamshed Sajjad Ahmed Khan Leghari Muhammad Ismail Qaiser Mansoor |
| |
Affiliation: | 1. International Islamic University, Islamabad Pakistan ; 2. Pakistan Institute of Engineering and Applied Sciences, Islamabad Pakistan ; 3. Institute of Biomedical and Genetic Engineering, Islamabad Pakistan |
| |
Abstract: | The silver oxide nanoparticles (AgO2 ‐NPs) were synthesised using silver foil as a new precursor in wet chemical method. X‐ray diffraction analysis shows crystallographic structures of AgO2 ‐NPs with crystallite size of 35.54 nm well‐matched with standard cubic structure. Scanning electron microscopy analysis clearly shows the random distribution of spherical‐shaped nanoparticles. Energy dispersive X‐ray analysis confirmed the purity of the samples as it shows no impurity element. Fourier transforms infra‐red analysis confirmed the formation of AgO2 ‐NPs with the presence of Ag‐O‐Ag stretching bond. All the techniques also confirmed the loading of ceftriaxone drug on the surface of AgO2 ‐NPs. This study also described the effect of AgO2 ‐NPs having synergistic activity with β lactam antibiotic i.e. ceftriaxone against ESBL generating Escherichia coli (E. coli). Among isolated strains of E. coli, 60.0% were found to be ESBL producer. The synergistic activities of AgO2 ‐NPs with ceftriaxone suggest that these combinations are effective against MDR‐ESBL E. coli strains as evident by increase in zone sizes. The present study observed rise in MDR‐ESBL E. coli with polymorphism of blaCTXM and blaSHV causing UTI infections in Pakistani population. The antibiotic and AgO2 ‐NPs synergistic effect can be used as an efficient approach to combat uro‐pathogenic infections.Inspec keywords: antibacterial activity, nanofabrication, nanomedicine, drugs, nanoparticles, microorganisms, crystallites, scanning electron microscopy, silver compounds, X‐ray diffraction, X‐ray chemical analysis, Fourier transform infrared spectra, organic compounds, geneticsOther keywords: synergistic evaluation, clinical strains, silver oxide nanoparticles, silver foil, wet chemical method, X‐ray diffraction analysis, crystallographic structures, standard cubic structure, spherical‐shaped nanoparticles, energy dispersive X‐ray analysis, ceftriaxone drug, synergistic activity, ESBL producer, scanning electron microscopy, Fourier transform infrared analysis, Escherichia coli, blaSHV gene positive ESBL, crystallite size, random distribution, β lactam antibiotics, MDR‐ESBL E. coli strains, polymorphism, blaCTXM, uro‐pathogenic infections, uro‐pathogenic E. coli, AgO2 |
| |
Keywords: | |
|
|