首页 | 本学科首页   官方微博 | 高级检索  
     


Functionalisation of Fe3 O4 nanoparticles by 2‐((pyrazol‐4‐yl) methylene) hydrazinecarbothioamide enhances the apoptosis of human breast cancer MCF‐7 cells
Authors:Mohammad Reza Izadpanah  Ali Salehzadeh  Mohammad Zaefizadeh  Mohammad Nikpasand
Affiliation:1. Department of Biology, Rasht Branch, Islamic Azad University, Rasht Iran ; 2. Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil Iran ; 3. Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht Iran
Abstract:Cancer is a major cause of death. Thus, the incidence and mortality rate of cancer is globally important. Regarding vast problems caused by chemotherapy drugs, efforts have progressed to find new anti‐cancer drugs. Pyrazole derivatives are known as components with anti‐cancer properties. In here, Fe3 O4 nanoparticles were first functionalized with (3‐chloropropyl) trimethoxysilane, then 2‐((pyrazol‐4‐yl) methylene) hydrazinecarbothioamide (P) was anchored on the surface of magnetic nanoparticles (PL). The synthesized nano‐compounds were characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, Zeta potential, dynamic light scattering, and energy‐dispersive x‐ray spectrometry analyses. The cytotoxicity effect was evaluated using MTT assay, apoptosis test by Flow cytometry, cell cycle analysis, Caspase‐3 activity assay and Hoechst staining on MCF‐7 cell line. The high toxicity for tumor cells and low toxicity on normal cells (MCF10A) was considered as an important feature (selectivity index, 10.9). Based on results, the IC50 for P and PL compounds were 157.80 and 131.84 μM/ml respectively. Moreover, apoptosis inducing, nuclear fragmentation, Caspase 3 activity and induction of cell rest in sub‐G1 and S phases, were also observed. The inhibitory effect of PL was significantly higher than P, which could be due to the high penetrability of Fe3 O4 nanoparticles.Inspec keywords: magnetic particles, drugs, nanomedicine, biochemistry, cancer, light scattering, scanning electron microscopy, molecular biophysics, iron compounds, electrokinetic effects, nanofabrication, tumours, X‐ray diffraction, cellular biophysics, nanoparticles, biomedical materials, toxicology, nanomagnetics, Fourier transform infrared spectra, enzymes, X‐ray chemical analysisOther keywords: anticancer properties, Fe3 O4 magnetic nanoparticles, (3‐chloropropyl) trimethoxysilane, energy‐dispersive X‐ray spectrometry, cell cycle analysis, MCF‐7 cell line, tumour cells, human breast cancer MCF‐7 cells, mortality rate, pyrazole derivatives, 2‐((pyrazol‐4‐yl) methylene) hydrazinecarbothioamide, chemotherapy drugs, heterocyclic components, nanocompounds, X‐ray diffraction, scanning electron microscopy, Zeta potential, dynamic light scattering, cytotoxicity effect, MTT assay, apoptosis test, caspase‐3 activity assay, Hoechst staining, MCF10A nontumourigenic cells, cell rest induction, nuclear fragmentation, Fe3 O4
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号