首页 | 本学科首页   官方微博 | 高级检索  
     


Catalytic reduction in 4‐nitrophenol using Actinodaphne madraspatana Bedd leaves‐mediated palladium nanoparticles
Authors:Dhananjayan Badma Priya  Indira Viswambaran Asharani
Affiliation:1. Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632 014 India
Abstract:There is a growing demand for the development of non‐toxic, cost‐effective, and environmentally benign green synthetic strategy for the production of metal nanoparticles. Herein, the authors have reported Actinodaphne madraspatana Bedd (AMB) leaves as the bioreducing agent for the synthesis of palladium nanoparticles (PdNPs) and its catalytic activity was evaluated for the reduction of 4‐nitrophenol (4‐NP) to 4‐aminophenol with undisruptive effect on human health and environment. The broad and continuous absorbance spectrum obtained in the UV–visible region indicated the formation of PdNPs. The synthesized PdNPs were found to be crystalline, spherical, and quasi‐spherical in shape with an average particle size of 13 nm was confirmed by X‐ray diffractometer and transmission electron microscope. Fourier transform infrared spectra revealed the active photo constituents present in the aqueous extract of AMB involved in the bioreduction of palladium ions to PdNPs. The catalytic activity of biosynthesized PdNPs was demonstrated for the reduction of 4‐NP via electron‐relay process. Also, the influential parameters such as catalyst dosage, concentration of 4‐NP, and sodium borohydride were studied in detail. From the present study, PdNPs were found to be a potential nanocatalyst for nitro compound reduction and also for environmental remediation of wastewater effluents from industries.Inspec keywords: palladium, nanoparticles, particle size, nanofabrication, catalysis, catalysts, reduction (chemical), organic compounds, ultraviolet spectra, visible spectra, X‐ray diffraction, transmission electron microscopy, Fourier transform infrared spectraOther keywords: nitro compound reduction, environmental remediation, wastewater effluents, Pd, nanocatalyst, sodium borohydride, 4‐NP concentration, catalyst dosage, electron‐relay process, bioreduction, aqueous extract, Fourier transform infrared spectra, transmission electron microscopy, X‐ray diffractometry, particle size, quasispherical shape, spherical shape, crystalline shape, UV‐visible abosprtion spectra, human environment, human health, 4‐aminophenol, catalytic activity, bioreducing agent, metal nanoparticles, Actinodaphne madraspatana Bedd leaves‐mediated palladium nanoparticles, 4‐nitrophenol, catalytic reduction
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号