首页 | 本学科首页   官方微博 | 高级检索  
     


LEDGF/p75 Is Required for an Efficient DNA Damage Response
Authors:Victoria Liedtke,Christian Schr  der,Dirk Roggenbuck,Romano Weiss,Ralf Stohwasser,Peter Schierack,Stefan R  diger,Lysann Schenk
Affiliation:1.Faculty of Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany; (V.L.); (C.S.); (D.R.); (R.W.); (R.S.); (P.S.); (S.R.);2.Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
Abstract:Lens epithelium-derived growth factor splice variant of 75 kDa (LEDGF/p75) plays an important role in cancer, but its DNA-damage repair (DDR)-related implications are still not completely understood. Different LEDGF model cell lines were generated: a complete knock-out of LEDGF (KO) and re-expression of LEDGF/p75 or LEDGF/p52 using CRISPR/Cas9 technology. Their proliferation and migration capacity as well as their chemosensitivity were determined, which was followed by investigation of the DDR signaling pathways by Western blot and immunofluorescence. LEDGF-deficient cells exhibited a decreased proliferation and migration as well as an increased sensitivity toward etoposide. Moreover, LEDGF-depleted cells showed a significant reduction in the recruitment of downstream DDR-related proteins such as replication protein A 32 kDa subunit (RPA32) after exposure to etoposide. The re-expression of LEDGF/p75 rescued all knock-out effects. Surprisingly, untreated LEDGF KO cells showed an increased amount of DNA fragmentation combined with an increased formation of γH2AX and BRCA1. In contrast, the protein levels of ubiquitin-conjugating enzyme UBC13 and nuclear proteasome activator PA28γ were substantially reduced upon LEDGF KO. This study provides for the first time an insight that LEDGF is not only involved in the recruitment of CtIP but has also an effect on the ubiquitin-dependent regulation of DDR signaling molecules and highlights the role of LEDGF/p75 in homology-directed DNA repair.
Keywords:LEDGF, CRISPR/Cas9, DNA damage signaling, γ  H2AX, ubiquitination
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号