首页 | 本学科首页   官方微博 | 高级检索  
     


Biogenic synthesis and thermo‐magnetic study of highly porous carbon nanotubes
Authors:Rachana Ranu  Yatishwar Chauhan  Amar Ratan  Pramod K Singh  Bhaskar Bhattacharya  Sandeep K Tomar
Affiliation:1. Institute of Engineering and Technology, J K Lakshmipat University, Jaipur Rajasthan, India ; 2. Material Research Laboratory, School of Basic Sciences and Research, Sharda University, Greater Noida India ; 3. Mesoporous Systems and Nanocomposites Research Laboratory, University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi India ; 4. M M V, Department of Physics, Banaras Hindu University, Varanasi India
Abstract:Nanomaterials synthesis using natural sources is the technology to up come with advanced materials through extracts of plant, microorganisms, poultry waste etc. In this study, the authors report the synthesis of porous carbon nanotubes using high‐temperature decomposition technique facilitated by cobalt salt using chicken fats, a poultry waste as a precursor. Since chicken fats contain fatty acids which can decompose into short hydrocarbon chains and cobalt can act as the catalyst. The formation of carbon nanotubes was confirmed by Raman spectra, peaks at 1580 and 1350.46 cm−1 confirmed the graphite mode G‐band and structural imperfections defect mode D‐band, respectively. Transmission electron microscopy showed the formation of tube‐like structures. Nitrogen adsorption–desorption studies showed the high‐surface area of 418.1 m2 g−1 with an estimated pore diameter of 8.1 nm. Thermogravimetry analysis–derivative thermogravimetric analysis–differential thermal analysis showed the instant weight loss at 517°C attributed to the rapid combustion of nanotubes. A vibrating‐sample magnetometer showed the paramagnetic nature of the so‐formed carbon nanotubes formed.Inspec keywords: transmission electron microscopy, infrared spectra, nanomagnetics, pyrolysis, decomposition, adsorption, desorption, carbon nanotubes, differential thermal analysis, thermal analysis, nanofabrication, Raman spectra, X‐ray diffraction, scanning electron microscopy, paramagnetic materialsOther keywords: biogenic synthesis, highly porous carbon nanotubes, microorganisms, high‐temperature decomposition technique, cobalt salt, chicken fats, fatty acids, short hydrocarbon chains, Raman spectra, graphite mode G‐band, structural imperfections defect mode D‐band, transmission electron microscopy, paramagnetic nature, thermo‐magnetic properties, poultry waste, nitrogen adsorption‐desorption studies, thermogravimetry analysis, differential thermal analysis, carbon nanotubes, temperature 517.0 degC, C
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号