首页 | 本学科首页   官方微博 | 高级检索  
     


In vitro evaluation of biodegradable nHAP‐Chitosan‐Gelatin‐based scaffold for tissue engineering application
Authors:Shankar Thariga  Rajakannu Subashini  Saravanan Pavithra  Prabakaran Meenachi  Prasanna Kumar  Pannerselvam Balashanmugam  Ponnusamy Senthil Kumar
Affiliation:1. Department of Biomedical Engineering, SSN College of Engineering, Chennai 603 110 India ; 2. Avanz Bio Private Ltd, East Tambaram, Chennai 600 059 India ; 3. Department of Chemical Engineering, SSN College of Engineering, Chennai 603 110 India ; 4. SSN‐Centre for Radiation, Environmental Science and Technology (SSN‐CREST), SSN College of Engineering, Chennai 603110 India
Abstract:The present study focuses on fabrication and characterisation of porous composite scaffold containing hydroxyapatite (HAP), chitosan, and gelatin with an average pore size of 250–1010 nm for improving wound repair and regeneration by Electrospinning method. From the results of X ‐Ray Diffraction (XRD) study, the peaks correspond to crystallographic structure of HAP powder. The presence of functional group bonds of HAP powder, Chitosan and scaffold was studied using Fourier Transform Infrared Spectroscopy (FTIR). The surface morphology of the scaffold was observed using Scanning Electron Microscope (SEM). The Bioactivity of the Nano composite scaffolds was studied using simulated body fluid solution at 37 ± 1°C. The biodegradability test was studied using Tris‐Buffer solution for the prepared nanocomposites [nano Chitosan, nano Chitosan gelatin, Nano based Hydroxyapatite Chitosan gelatin]. The cell migration and potential biocompatibility of nHAP‐chitosan‐gelatin scaffold was assessed via wound scratch assay and were compared to povedeen as control. Cytocompatibility evaluation for Vero Cells using wound scratch assay showed that the fabricated porous nanocomposite scaffold possess higher cell proliferation and growth than that of povedeen. Thus, the study showed that the developed nanocomposite scaffolds are potential candidates for regenerating damaged cell tissue in wound healing process.Inspec keywords: nanofabrication, tissue engineering, electrospinning, wounds, cellular biophysics, scanning electron microscopy, surface morphology, X‐ray diffraction, biomedical materials, nanomedicine, porosity, biodegradable materials, nanoporous materials, calcium compounds, gelatin, nanocomposites, Fourier transform infrared spectra, nanoparticles, precipitation (physical chemistry)Other keywords: average pore size, wound repair, crystallographic structure, HAP powder, functional group bonds, simulated body fluid solution, biodegradability test, Tris‐Buffer solution, cell migration, wound scratch assay, tissue engineering, electrospinning method, X‐ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, biocompatibility, cytocompatibility, porous nanocomposite scaffold, cell tissue, nHAP‐chitosan‐gelatin scaffold composites, wet chemical precipitation method, surface morphology, nanohydroxyapatite‐nanochitosan‐gelatin scaffold composites, cell proliferation, wound healing, (Ca10 (PO4)6 (OH)2)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号