首页 | 本学科首页   官方微博 | 高级检索  
     


Biosynthesised silver nanoparticles using aqueous leaf extract of Tagetes patula L. and evaluation of their antifungal activity against phytopathogenic fungi
Authors:Aradhana Sukhwal  Devendra Jain  Arunabh Joshi  Pokhar Rawal  Himmat S Kushwaha
Affiliation:1. Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur 313 001 India ; 2. Department of Plant Pathology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur 313 001 India ; 3. School of Engineering, Indian Institute of Technology Mandi, Himachal Pradesh, India
Abstract:In the recent decades, nanotechnology is gaining tremendous impetus due to its capability of modulating metals into their nanosize, which drastically changes the chemical, physical, biological and optical properties of metals. In this study, silver nanoparticles (AgNPs) synthesis using aqueous leaf extracts of Tagetes patula L. which act as reducing agent as well as capping agent is reported. Synthesis of AgNPs was observed at different parameters like temperature, concentration of silver nitrate, leaf extract concentration and time of reduction. The AgNPs were characterized using UV‐vis spectroscopy, scanning electron microscope with energy dispersive spectroscopy, transmission electron microscopy with selected area electron diffraction, X‐ray diffraction, Fourier transform infrared and dynamic light scattering analysis. These analyses revealed the size of nanoparticles ranging from 15 to 30 nm as well revealed their spherical shape and cubic and hexagonal lattice structure. The lower zeta potential (−14.2mV) and the FTIR spectra indicate that the synthesized AgNPs are remarkably stable for a long period due to the capped biomolecules on the surface of nanoparticles. Furthermore, these AgNPs were found to be highly toxic against phytopathogenic fungi Colletotrichum chlorophyti by both in vitro and in vivo and might be a safer alternative to chemical fungicides.Inspec keywords: silver, nanoparticles, nanofabrication, nanobiotechnology, ultraviolet spectra, visible spectra, scanning electron microscopy, X‐ray chemical analysis, electron diffraction, X‐ray diffraction, Fourier transform infrared spectra, crystal structure, electrokinetic effects, antibacterial activityOther keywords: biosynthesised silver nanoparticles, aqueous leaf extract, Tagetes patula L, antifungal activity, phytopathogenic fungi, nanotechnology, UV–vis spectroscopy, scanning electron microscope, energy dispersive spectroscopy, transmission electron microscopy, selected area electron diffraction, X‐ray diffraction, Fourier transform infrared spectra, dynamic light scattering analysis, hexagonal lattice structure, zeta potential, phytopathogenic fungi Colletotrichum chlorophyti, cubic lattice structure, size 15 nm to 30 nm, Ag
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号