摘 要: | 为实现非结构化工艺规程文本中关键信息的高效识别,建立一种基于机加工领域词典和神经网络的命名实体识别模型.首先,结合机加工领域词典与jieba分词技术进行数据集的自动标注,并在对工艺参数信息进行标注的过程中将数字和标志字母划分为一个分词单位以增强后续特征提取效果;其次,在word2vec词嵌入的基础上,采用双向长短时记忆网络对文本进行特征提取;最后,采用条件随机场综合上下文逻辑以提高关键工艺信息的识别准确率.在包含431条工步内容的数据集上,对所提模型的识别效果进行实验,结果表明,所提模型的准确率、召回率和F1值分别为90.20%,93.88%和92.00%,在与领域内传统模型的对比上具有一定优势,并使用3个不同工艺规程数据集验证了该模型的鲁棒性.
|