首页 | 本学科首页   官方微博 | 高级检索  
     


Transmission Efficiency of an Aerodynamic Focusing Lens System: Comparison of Model Calculations and Laboratory Measurements for the Aerodyne Aerosol Mass Spectrometer
Authors:Peter S. K. Liu  Rensheng Deng  Kenneth A. Smith  Leah R. Williams  John T. Jayne  Manjula R. Canagaratna
Affiliation:1. Department of Atmospheric Science , University of Wyoming , Laramie, Wyoming, USA;2. Now at: Cloud Physics and Severe Weather Research Section, Science and Technology Branch, Environment Canada , Ontario, Canada;3. Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge, Massachusetts, USA;4. Center for Aerosol and Cloud Chemistry, Aerodyne Research, Inc. , Billerica, Massachusetts, USA
Abstract:The size-dependent particle transmission efficiency of the aerodynamic lens system used in the Aerodyne Aerosol Mass Spectrometer (AMS) was investigated with computational fluid dynamics (CFD) calculations and experimental measurements. The CFD calculations revealed that the entire lens system, including the aerodynamic lens itself, the critical orifice which defines the operating lens pressure, and a valve assembly, needs to be considered. Previous calculations considered only the aerodynamic lens. The calculations also investigated the effect of operating the lens system at two different sampling pressures, 7.8 × 104 Pa (585 torr) and 1.0 × 105 Pa (760 torr). Experimental measurements of transmission efficiency were performed with size-selected diethyl hexyl sebacate (DEHS), NH4NO3, and NaNO3 particles on three different AMS instruments at two different ambient sampling pressures (7.8 × 104 Pa, 585 torr and 1.0 × 105 Pa, 760 torr). Comparisons of the measurements and the calculations show qualitative agreement, but there are significant deviations which are as yet unexplained. On the small size end (30 nm to 150 nm vacuum aerodynamic diameter), the measured transmission efficiency is lower than predicted. On the large size end (> 350 nm vacuum aerodynamic diameter) the measured transmission efficiency is greater than predicted at 7.8 × 104 Pa (585 torr) and in good agreement with the prediction at 1.0 × 105 Pa (760 torr).
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号