首页 | 本学科首页   官方微博 | 高级检索  
     


Particle Bounce During Filtration of Particles on Wet and Dry Filters
Authors:Benjamin J Mullins  Igor E Agranovski  Roger D Braddock
Affiliation:School of Environmental Engineering, Faculty of Environmental Sciences , Griffith University , Nathan, Australia
Abstract:

This paper experimentally examines the bounce and immediate re-entrainment of liquid and solid monodisperse aerosols under a stable filtration regime (precake formation) by wet and dry fibrous filters. PSL and DEHS were the solid and liquid aerosols, respectively, used in four monodisperse sizes of 0.52, 0.83, 1.50, and 3.00 w m. Three different fibrous filters were used to filter the aerosol streams, and the efficiency of the filtration process for each aerosol type under dry and wet regimes was measured. It was found that the solid particles generally exhibited a lower fractional filtration efficiency than liquid particles, although this difference decreased in the smaller size fractions. The difference between solid and liquid efficiencies was found to be greatest in the 1.5 w m size range. As particle sizes of liquid/solid aerosols and filtration parameters were similar, this difference is most likely to be due to the effect of particle bounce and or immediate re-entrainment occurring inside the filter, with the greater efficiency of filtration of the liquid particles being due to their greater capacity to plastically/elastically deform in order to absorb the impact forces. However, for the wet filtration regime (each fibre of the filter was coated by a film of water), no significant difference in filtration efficiency was detectable between solid and liquid aerosols. Therefore, the conclusion can be drawn that the either the bounce effect of the particles is inhibited by the liquid film, or the filtration conditions in the wet filter are so different that the aerosol properties are less significant with respect to capture.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号