首页 | 本学科首页   官方微博 | 高级检索  
     


Experimental Study on the Loading Characteristics of Needlefelt Filters with Micrometer-Sized Monodisperse Aerosols
Authors:Chih-Chieh Chen  Wei-Yu Chen  Sheng-Hsiu Huang  Wen-Yinn Lin  Yu-Mei Kuo  Fu-Tien Jeng
Affiliation:1. Institute of Occupational Medicine and Industrial Hygiene, College of Public Health , National Taiwan University , Taipei, Taiwan;2. Department of Environmental Engineering and Health , Tajen Junior College of Pharmacy , Yenpu, Pingtong, Taiwan;3. Department of Industrial Safety and Hygiene , Chung Hwa College of Medical Technology , Tainan, Taiwan;4. Institute of Environmental Engineering , National Taiwan University , Taipei, Taiwan
Abstract:

In this work, three types of needlefelt filters, made of Polyester (PE), Ryton Sulfar (RS), and Polyaramid (PA), were tested to in- vestigate the aerosol loading characteristics of fabric filters when challenged with micrometer-sized monodisperse potassium sodium tartrate (PST) particles. A fibrous filter with packing density of 9%, thickness of 0.38 mm, and fiber diameter of 5.1 θ m was included for comparison. A vibrating orifice monodisperse aerosol generator was used to produce three different sizes (5, 10, and 20 θ m) of PST particles for aerosol loading experiment. An ultrasonic atomizing nozzle and a TSI constant output nebulizer were used to generate polydisperse PST particles for the aerosol penetration test. The aerosol penetration of submicrometer-sized particles through the filters was measured by using a Scanning Mobility Particle Sizer. An Aerodynamic Particle Sizer was used to measure the penetration fraction of aerosol particles larger than 0.8 θ m. The pressure drop across the filter was monitored by using pressure transducers, which were calibrated against an inclined manometer. Airflows of 5, 10 , 20, and 30 cm/s were used to study the flow dependency. The aerosol penetration results showed that the particles larger than 3 θ m did not penetrate the clean fabric filters tested in the present study. The loading curves (plots of pressure drop against sampling time) displayed three regions: an initial region of fast increase, a transition region, and a final linear region after the dust formation point. After the formation point of the dust cake, both fabric and fibrous filters shared the same slope (of the loading curves). The slope of different regions of the loading curves was determined by many factors, such as size of challenge aerosol, face found to be critical to the performance of the fabric filters. In order lower porosity, which caused an extra rise in pressure drop across velocity, surface treatment, and the compressibility of the dust cake forming on the filter. The method of final surface treatment was to avoid the unnecessary rise in air resistance, the melting clumps formed during final surface treatment should be as thin and narrow as possible, just enough to support the filter bag cleaning. From the standpoint of filter quality and energy consumption, the low filtration velocity has to be adopted whenever possible, because high filtration velocity not only led to lower filter quality (in particular for submicrometer-sized particles) but also created dust cake of lower porosity, which caused an extra rise in pressure drop across thet dust cake.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号