首页 | 本学科首页   官方微博 | 高级检索  
     


Mutation of calmodulin-binding site renders the Na+/H+ exchanger (NHE1) highly H(+)-sensitive and Ca2+ regulation-defective
Authors:S Wakabayashi  B Bertrand  T Ikeda  J Pouysségur  M Shigekawa
Affiliation:Department of Molecular Physiology, National Cardiovascular Center Research Institute, Osaka, Japan.
Abstract:The ubiquitous plasma membrane Na+/H+ exchanger (NHE1) is rapidly activated in response to various extracellular signals. To understand how the intracellular Ca2+ is involved in this activation process, we investigated the effect of Ca2+ ionophore ionomycin on activity of the wild-type or mutant NHE1 expressed in the exchanger-deficient fibroblasts (PS120). In wild-type transfectants, a short (up to 1 min) incubation with ionomycin induced a significant alkaline shift (approximately 0.2 pH unit) in the intracellular pH (pHi) dependence of the rate of 5-(N-ethyl-N-isopropyl) amiloride-sensitive 22Na+ uptake, without changes in the cell volume and phosphorylation state of NHE1. Mutations that prevented calmodulin (CaM) binding to a high affinity binding region (region A, amino acids 636-656) rendered NHE1 constitutively active by inducing a similar alkaline shift in pHi dependence of Na+/H+ exchange. These same mutations abolished the ionomycin-induced NHE1 activation. These data suggest that CaM-binding region A functions as an "autoinhibitory domain" and that Ca2+/CaM activates NHE1 by binding to region A and thus abolishing its inhibitory effect. Furthermore, we found that a short stimulation with thrombin and ionomycin had apparently no additive effects on the alkaline shift in the pHi dependence of Na+/H+ exchange and that deletion of region A also abolished such an alkaline shift induced by a short thrombin stimulation. The results strongly suggest that the early thrombin response and the ionomycin response share the same activation mechanism. Based on these data and the results shown in the accompanying paper (Bertrand, B., Wakabayashi, S., Ikeda, T., Pouysségur, J., and Shigekawa, M. (1994) J. Biol. Chem. 269, 13703-13709), we propose that CaM is one of the major "signal transducers" that mediate distinct extracellular signals to the "pHi sensor" of NHE1.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号