首页 | 本学科首页   官方微博 | 高级检索  
     

求解多目标不相关并行机调度问题的多群体人工蜂群算法
引用本文:雷德明,杨海. 求解多目标不相关并行机调度问题的多群体人工蜂群算法[J]. 控制与决策, 2022, 37(5): 1174-1182
作者姓名:雷德明  杨海
作者单位:武汉理工大学自动化学院,武汉430070
基金项目:国家自然科学基金项目(61573264).
摘    要:针对具有预防性维修(PM)和顺序相关准备时间(SDST)的不相关并行机调度问题,提出一种多群体人工蜂群算法(MABC)以同时最小化完工时间和总延迟时间.该算法将雇佣蜂分割成s个雇佣蜂群,除最差雇佣蜂群外,每个雇佣蜂群都对应1个跟随蜂群.结合2个目标函数、PM和SDST的特征设计3种邻域搜索,采用全局搜索和邻域搜索的不同...

关 键 词:预防性维修  顺序相关准备时间  不相关并行机调度  人工蜂群算法

Multi-colony artificial bee colony algorithm for multi-objective unrelated parallel machine scheduling problem
LEI De-ming,YANG Hai. Multi-colony artificial bee colony algorithm for multi-objective unrelated parallel machine scheduling problem[J]. Control and Decision, 2022, 37(5): 1174-1182
Authors:LEI De-ming  YANG Hai
Affiliation:College of Automation,Wuhan University of Technology,Wuhan 430070,China
Abstract:To solve the unrelated parallel machine scheduling problem (UPMSP) with preventive maintenance (PM) and sequence dependent setup time (SDST), a multi-colony artificial bee colony (MABC) algorithm is proposed to minimize makespan and total tardiness simultaneously. In this algorithm, employed bees are divided into s colonies. Except for the worst employed bee colony, each employed bee colony corresponds to a onlooker bee colony. Combined with the characteristics of two objective functions, PM and SDST, three kinds of neighborhood searches are designed. Different combinations of global search and neighborhood search are used to implement the employed bee phase and the onlooker bee phase, and two elimination processes are applied. Experimental research on the strategy and search performance of the MABC is carried out, and computational results demonstrate the effectiveness of the proposed strategy and the search advantage of the MABC.
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号