首页 | 本学科首页   官方微博 | 高级检索  
     

基于Shearlet变换的红外与可见光图像自适应融合
引用本文:邓承志,饶伟. 基于Shearlet变换的红外与可见光图像自适应融合[J]. 激光与红外, 2013, 43(4): 399-403
作者姓名:邓承志  饶伟
作者单位:南昌工程学院计算机网络与信息安全研究所,江西南昌330099;南昌工程学院信息工程学院,江西南昌330099
基金项目:国家自然科学基金项目(No.6116202);江西省自然科学基金项目(No.2009GZW0020;No.2010GZW0049);江西省教育厅科技项目(No.GJJ12632);南昌工程学院青年基金项目(No.2010KJ015)资助
摘    要:提出一种基于Shearlet变换的红外与可见光图像自适应融合算法。算法首先对待融合图像进行Shearlet变换;然而采用粒子群优化算法确定出低频成分的最佳融合权值,自适应地对红外与可见光图像的Shearlet低频系数进行整合,利用Shearlet变换对边缘、轮廓等细节特征的准确定位,采用加权局部能量最大准则对Shearlet高频系数进行融合;最后对融合系数进行逆Shearlet变换得到融合图像。与现有的部分算法进行对比实验,结果表明本文算法获得较好地融合效果。

关 键 词:图像融合  Shearlet变换  粒子群优化  红外  可见光

Shearlet based adaptive fusion of infrared and visible images
DENG Cheng-zhi,RAO Wei. Shearlet based adaptive fusion of infrared and visible images[J]. Laser & Infrared, 2013, 43(4): 399-403
Authors:DENG Cheng-zhi  RAO Wei
Affiliation:Institute of Computer Networks and Information Security,Nanchang Institute of Technology,Nanchang 330099,China;School of Information Engineering,Nanchang Institute of Technology,Nanchang 330099,China
Abstract:An adaptive fusion method of infrared and visible images based on shearlet transform is presented.Firstly,the source images are transformed by shearlet transform.And then,the low-frequency coefficients are adaptively fused by the optimal fusion weights,which are selected by particle swarm optimization.With the better representation of Shearlet for edge and contour,the weighted local energy rule is employed to select the better high-frequency coefficients to fusion.Finally,the fused coefficient is transform by inverse Shearlet transform to obtain fused image.Compared to the other existing methods,the experimental results show the performance of the proposed method is much better.
Keywords:image fusion  Shearlet transform  particle swarm optimization  infrared image  visible image
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《激光与红外》浏览原始摘要信息
点击此处可从《激光与红外》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号