首页 | 本学科首页   官方微博 | 高级检索  
     

基于PSO聚类分析与BP网络的短期电力负荷预测
引用本文:周健,蒋传文,陈晞. 基于PSO聚类分析与BP网络的短期电力负荷预测[J]. 水电能源科学, 2009, 27(3)
作者姓名:周健  蒋传文  陈晞
作者单位:1. 二滩水电开发有限责任公司,四川,成都,6100511
2. 上海交通大学,电子信息与电气工程学院电气工程系,上海,200240
摘    要:针对短期负荷预测特点, 提出一种基于PSO聚类分析和BP网络的短期负荷预测方法, 通过PSO聚类分析将负荷历史数据分成若干类对输入数据预处理,建立了相应BP网络模型,采用附加动量和变学习速率法预测每小时负荷.以华东某地区实际负荷预测为例,分析结果表明,该方法适应性强、预测精度高、结果满意.

关 键 词:短期负荷预测  PSO优化算法  聚类分析  BP网络  电力系统

Power System Short-Term Load Forecasting Based On PSO Clustering Analysis and BP Neural Network
ZHOU Jian JIANG Chuanwen CHEN Xi. Power System Short-Term Load Forecasting Based On PSO Clustering Analysis and BP Neural Network[J]. International Journal Hydroelectric Energy, 2009, 27(3)
Authors:ZHOU Jian JIANG Chuanwen CHEN Xi
Affiliation:1.Ertan Hydropower Development Company Limited;Chengdu 610051;China;2.Department of Electrical Engineering School of Electronic;Information and Electrical Engineering;Shanghai Jiao Tong University;Shanghai 200240;China
Abstract:A short-term load forecasting method based on PSO clustering analysis and BP neural network is presented.By means of dividing the historical load data into several categories by PSO clustering analysis and finding out the category coincident with that of the daily load to be forecasted,corresponding BP neural network model is built,then the additional momentum and diverse learning speed algorithm are employed to forecast hourly load.The actual load forecasting results for one district of HUDONG show that th...
Keywords:short-term load forecasting  PSO clustering analysis  BP network  power system  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号