Estimating and optimizing performance for parallel programs |
| |
Authors: | Fahringer T. |
| |
Affiliation: | Inst. for Software Technol. & Parallel Syst., Wien Univ.; |
| |
Abstract: | The article describes P3T, a parameter-based performance prediction tool that estimates performance for parallel programs running on distributed-memory parallel architectures. P3 T has been carefully designed to address all of the above performance estimation issues. To achieve high estimation accuracy, P 3T aggressively exploits compiler analysis and optimization information. Our method is based on modeling loop iteration spaces, array access patterns, and data distributions by intersection and volume operations on n-dimensional polytopes. The most critical architecture-specific factors, such as cache line sizes, number of cache lines available, routing policy, start-up times, message transfer time per byte, and so forth, are modeled to reflect the performance impact of the target machine. P3T has been developed in the context of the Vienna Fortran Compilation Systems (VFCS), a state-of-the-art parallelization tool for distributed-memory systems. VFCS translates Fortran programs into explicitly parallel message-passing programs. P 3T successfully guides the interactive and automatic restructuring of programs under this system. The article describes the underlying compilation and programming model and discusses the most critical design decisions made for P3T; in addition, it outlines the implementation of the parallel program parameters. Also described are the VFCS context under which P3T is applied and the P3T graphical user interface |
| |
Keywords: | |
|
|