首页 | 本学科首页   官方微博 | 高级检索  
     

基于误差最小化的GM(1,1) 模型背景值优化方法
引用本文:徐宁 党耀国 丁松. 基于误差最小化的GM(1,1) 模型背景值优化方法[J]. 控制与决策, 2015, 30(2): 283-288
作者姓名:徐宁 党耀国 丁松
作者单位:南京航空航天大学经济与管理学院,南京,211100
基金项目:国家自然科学基金项目(71071077;71371098);中央高校基本科研业务费专项资金项目(NC2012001;NR2013015);高校哲学社会科学重点研究基地重大项目
摘    要:背景值是导致GM(1,1)模型产生系统误差的主要原因之一。对此,提出一种优化的GM(1,1)模型构建方法。首先,根据GM(1,1)模型时间响应式的函数形式,利用积分中值定理拟合真实背景值,研究发展系数与背景值之间的关系;然后,构建新的灰色微分方程,采用最小二乘法进行参数估计,并利用方程组还原原始参数,使背景值同时具备无偏性和最小误差性;最后,通过具体案例验证了所提出的优化模型能够突破高增长建模的局限,对实际问题的建模精度较高。

关 键 词:灰色预测  积分中值定理  背景值  最小二乘
收稿时间:2013-12-26
修稿时间:2014-03-24

Optimization method of background value in GM(1,1) model based on least error
XU Ning DANG Yao-guo DING Song. Optimization method of background value in GM(1,1) model based on least error[J]. Control and Decision, 2015, 30(2): 283-288
Authors:XU Ning DANG Yao-guo DING Song
Abstract:

The formula of background value is one of the main factors causing systematic error of GM(1,1) model. A construction method for optimizing GM(1,1) model is proposed. According to structure characteristics of GM(1,1) time response function, the mean value theorem of integral is used to fit the real background value, and the relationship between the background value and the development rate is analyzed. Then, a new grey differential equation is constructed, and the parameter vector is evaluated by using the least square method, and the original parameters are restored by equations system. The new background satisfies the unbiased property and least error. Finally, a numerical case shows that the proposed algorithm breaks the confine of modeling high growth sequences, and the application indicates that the optimized model has an obviously high accuracy in the actual problem.

Keywords:grey prediction  mean value theorem  background value  least square
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号