首页 | 本学科首页   官方微博 | 高级检索  
     


Stress-Rupture Characterization in Nickel-Based Superalloy Gas Turbine Engine Components
Authors:Wesley D. Pridemore
Affiliation:(1) Failure Analysis, Materials, Processes and Engineering Department, GE Aviation, Cincinnati, OH, USA
Abstract:Today’s gas turbine engines utilize high volume fraction gamma prime (γ′) strengthened alloys for turbine airfoils, which typically operate at temperatures greater than ∼0.5T m of the alloy. At these temperatures and at stresses below yield, time-dependent deformation (creep) of the airfoil can occur and, if left unabated, can result in complete separation of the airfoil. This process is commonly referred to as stress rupture. Insufficient cooling air, unintentional interruptions of cooling air as well as abnormal engine operating conditions are typical causes of stress-rupture failures in gas turbine blade components. Stress-rupture fractures are generally heavily oxidized, tend to be rough in texture, and are primarily intergranular and/or interdendritic in appearance compared to smoother, transgranular fatigue type fractures. Often, gross plastic yielding is visible on a macroscopic scale. Commonly observed microstructural characteristics include creep voiding along grain boundaries and/or interdendritic regions. Internal voids can also nucleate at carbides and other microconstituents, especially in single crystal castings that do not possess grain boundaries. Other signs of overtemperature include partial resolutioning of the γ′ strengthening precipitates, with the remaining volume fraction of γ′ commonly used to estimate blade metal temperatures. This article highlights the visual, fractographic, and metallographic characteristics typically encountered when analyzing stress rupture of turbine airfoils. An erratum to this article can be found at
Keywords:Gas turbine  Nickel-based superalloy  Creep  Stress-rupture  Gamma prime (γ    )  Grain boundaries  Interdendritic and creep voiding
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号