首页 | 本学科首页   官方微博 | 高级检索  
     


Metabolic engineering study on the direct fermentation of 2-keto-L-gulonic acid, a key intermediate of L-ascorbic acid in Pseudomonas putida IFO3738
Authors:Shibata T  Ichikawa C  Matsuura M  Takata Y  Noguchi Y  Saito Y  Yamashita M
Affiliation:Fermentation Development Laboratories, Fujisawa Pharmaceutical Co. Ltd., 156 Nakagawara, Shinkawacho, Nishikasugai-gun, Aichi 452-0915, Japan.
Abstract:We have achieved production of 2-keto-L-gulonic acid (2-KLGA) in recombinant Pseudomonas putida IFO3738. Firstly, the genes for sorbose dehydrogenase (SDH)/sorbosone dehydrogenase (SNDH) were introduced into P. putida. The recombinant P. putida/pBBR-SDH produced 0.7 mg/ml of 2-KLGA in a culture broth containing 5% L-sorbose. Replacement of the native SNDH promoter by the Escherichia coli tufB promoter (pBBR-SDH-tufB) improved the productivity of 2-KLGA up to 11.4 mg/ml. Secondly, the sorbitol dehydrogenase (SLDH) gene was also introduced into P. putida. The recombinant P. putida/pUCP19-3DH carrying the genes for SDH, SNDH and SLDH had the ability to produce 2-KLGA (7.5 mg/ml) in a 5% d-sorbitol broth. The productivity of 2-KLGA was improved up to 9.8 mg/ml by changing to an expression system with two plasmids, pBBR-SDH-tufB (for SDH/SNDH) and pUCP19-SLDH (for SLDH), respectively. Moreover, the replacement of the native SLDH promoter by the E. coli tufB promoter (pUCP19-SLDH-tufB) improved the 2-KLGA productivity up to 11.6 mg/ml. Optimization of cultivation conditions increased the conversion yield of 2-KLGA to 32% and that of l-idonate, a metabolite of 2-KLGA, to 40%. These results indicate P. putida IFO3738 is one of the candidate strains for direct fermentation of 2-KLGA.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号