首页 | 本学科首页   官方微博 | 高级检索  
     


An Approach to Estimate Interface Shear Stress of Ceramic Matrix Composites from Hysteresis Loops
Authors:Longbiao Li  Yingdong Song
Affiliation:(1) College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People’s Republic of China
Abstract:An approach to estimate interface shear stress of ceramic matrix composites during fatigue loading has been developed in this paper. By adopting a shear-lag model which includes the matrix shear deformation in the bonded region and friction in the debonded region, the matrix crack space and interface debonding length are obtained by matrix statistical cracking model and fracture mechanics interface debonding criterion. Based on the damage mechanisms of fiber sliding relative to matrix in the interface debonded region upon unloading and subsequent reloading, the unloading counter slip length and reloading new slip length are determined by the fracture mechanics method. The hysteresis loops of four different cases have been derived. The hysteresis loss energy for the strain energy lost per volume during corresponding cycle is formulated in terms of interface shear stress. By comparing the experimental hysteresis loss energy with computational values, the interface shear stress corresponding to different cycles can then be derived. The theoretical results have been compared with experimental data of three different ceramic composites.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号