首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of interfacial delamination on channel cracking of elastic thin films
Authors:Haixia Mei  Yaoyu Pang  Rui Huang
Affiliation:(1) Department of Aerospace Engineering and Engineering Mechanics, University of Texas, Austin, TX 78712, USA
Abstract:Channeling cracks in brittle thin films have been observed to be a key reliability issue for advanced interconnects and other integrated structures. Most theoretical studies to date have assumed no delamination at the interface, while experiments have observed channel cracks both with and without interfacial delamination. This paper analyzes the effect of interfacial delamination on the fracture condition of brittle thin films on elastic substrates. It is found that, depending on the elastic mismatch and interface toughness, a channel crack may grow with no delamination, with a stable delamination, or with unstable delamination. For a film on a relatively compliant substrate, a critical interface toughness is predicted, which separates stable and unstable delamination. For a film on a relatively stiff substrate, however, a channel crack grows with no delamination when the interface toughness is greater than a critical value, while stable delamination along with the channel crack is possible only in a small range of interface toughness for a specific elastic mismatch. An effective energy release rate for the steady-state growth of a channel crack is defined to account for the influence of interfacial delamination on both the fracture driving force and the resistance, which can be significantly higher than the energy release rate assuming no delamination.
Keywords:Channel cracking  Delamination  Thin films  Interface
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号