首页 | 本学科首页   官方微博 | 高级检索  
     

Phase relations,microstructure, and valence transition studies on CaZr_(1-x)Ce_xTi_2O_7(0.0≤x≤1.0) system
摘    要:In this study, Ce-doped zirconolite was synthesized through high-temperature solid-state reaction at 1250 ℃ in air for 96 h. The crystal phase.microstructure and valence transition were studied by X-ray diffraction(XRD), scanning electron microscopy(SEM), and X-ray photoelectron spectroscopy(XPS).Phase relations of CaZr_(1-x)Ce_xTi_2O_7 systems were determined by XRD analyses and Rietveld refinements.Four different phases are identified, namely zirconolite, perovskite, pyrochlore, and cerianite. The phase transformation(2M-zirconolite → 4M-zirconolite → Ce-pyrochlore) is caused by cations rearrangement as cerium content increases. The solubility limit of cerium ions in CaZr_(1-x)Ce_xTi_2O_7 system is estimated to be approximately 0.80. Under sintering air atmosphere, partial reduction of Ce~(4+) in Ce~(3+) is detected in Ce 3d XPS spectra, and the ratio of Ce~(3+) and Ce~(4+) significantly decreases as cerium content increases.

收稿时间:23 September 2017
本文献已被 CNKI ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号