首页 | 本学科首页   官方微博 | 高级检索  
     


Tight Bounds for Adopt-Commit Objects
Authors:James Aspnes  Faith Ellen
Affiliation:1. Department of Computer Science, Yale University, New Haven, USA
2. Department of Computer Science, University of Toronto, Toronto, Canada
Abstract:We give matching upper and lower bounds of \(\varTheta(\min(\frac{\log m}{\log \log m},\, n))\) for the individual step complexity of a wait-free m-valued adopt-commit object implemented using multi-writer registers for n anonymous processes. While the upper bound is deterministic, the lower bound holds for randomized adopt-commit objects as well. Our results are based on showing that adopt-commit objects are equivalent, up to small additive constants, to a simpler class of objects that we call conflict detectors. Our anonymous lower bound also applies to the individual step complexity of m-valued wait-free anonymous consensus, even for randomized algorithms with global coins against an oblivious adversary. The upper bound can be used to slightly improve the cost of randomized consensus against an oblivious adversary. For deterministic non-anonymous implementations of adopt-commit objects, we show a lower bound of \(\varOmega(\min(\frac{\log m}{\log \log m}, \frac{\sqrt{\log n}}{\log \log n}))\) and an upper bound of \(O(\min(\frac{\log m}{\log \log m},\, \log n))\) on the worst-case individual step complexity. For randomized non-anonymous implementations, we show that any execution contains at least one process whose steps exceed the deterministic lower bound.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号