首页 | 本学科首页   官方微博 | 高级检索  
     


Double-stranded (ds) RNA binding and not dimerization correlates with the activation of the dsRNA-dependent protein kinase (PKR)
Authors:S Wu  RJ Kaufman
Affiliation:Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor 48109, USA.
Abstract:Upon binding to double-stranded (ds) RNA, the dsRNA-dependent protein kinase (PKR) sequentially undergoes autophosphorylation and activation. Activated PKR may exist as a dimer and phosphorylates the eukaryotic translation initiation factor 2 alpha subunit (cIF-2 alpha) to inhibit polypeptide chain initiation. Transfection of COS-1 cells with a plasmid cDNA expression vector encoding a marker gene, activates endogenous PKR, and selectively inhibits translation of the marker mRNA, dihydrofolate reductase (DHFR). This system was used to study the dsRNA binding and dimerization requirements for over-expressed PKR mutants and subdomains to affect DHFR translation. DHFR translation was rescued by expression of either an ATP hydrolysis defective mutant PKR K296P, the amino-terminal 1-243 fragment containing two dsRNA binding motifs, or the isolated first RNA binding motif (amino acids 1-123). Mutation of K64E within the dsRNA binding motif 1 destroyed dsRNA binding and the ability to rescue DHFR translation. Immunoprecipitation of T7 epitope-tagged PKR derivatives from cell lysates detected interaction between intact PKR and the amino-terminal 1-243 fragment as well as a 1-243 fragment harboring the K64E mutation. Expression of adenovirus VAI RNA, a potent inhibitor of PKR activity, did not disrupt this interaction. In contrast, intact PKR did not interact with fragments containing the first dsRNA binding motif (1-123), the second dsRNA binding motif (98-243), or the isolated PKR kinase catalytic domain (228-551). These results demonstrate that the translational stimulation mediated by the dominant negative PKR mutant does not require dimerization, but requires the ability to bind dsRNA and indicate these mutants act by competition for binding to activators.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号